Hybrid platforms of graphane-graphene 2D structures: prototypes for atomically precise nanoelectronics.
نویسندگان
چکیده
First-principles calculations demonstrate that line/ribbon defects, resulting from a controlled dehydrogenation in graphane, lead to the formation of low-dimensional electron-rich tracks in a monolayer. The present simulations point out that hybrid graphane-graphene nanostructures exhibit important elements, greatly required for the fabrication of efficient electronic circuits at the atomic level.
منابع مشابه
New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology
Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new ma...
متن کاملAtomically precise semiconductor--graphene and hBN interfaces by Ge intercalation.
The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication o...
متن کاملAtomically thin layers of B–N–C–O with tunable composition
In recent times, atomically thin alloys of boron, nitrogen, and carbon have generated significant excitement as a composition-tunable two-dimensional (2D) material that demonstrates rich physics as well as application potentials. The possibility of tunably incorporating oxygen, a group VI element, into the honeycomb sp(2)-type 2D-BNC lattice is an intriguing idea from both fundamental and appli...
متن کاملAnalytical models of approximations for wave functions and energy dispersion in zigzag graphene nanoribbons
Related Articles Effect of in-situ oxygen on the electronic properties of graphene grown by carbon molecular beam epitaxy grown Appl. Phys. Lett. 100, 133107 (2012) Oxygen density dependent band gap of reduced graphene oxide J. Appl. Phys. 111, 054317 (2012) Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms AIP Advances 2, 012173 (2012) Transport propert...
متن کاملIn-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes.
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ∼5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 43 شماره
صفحات -
تاریخ انتشار 2014